查看原文
其他

Applied Energy:赤泥修饰Ca-Al-Ce双功能材料强化生物质水蒸气气化制氢

AEii国际应用能源 生物质前沿 2023-03-27

原文信息:

Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261922001933


研究背景
氢能是一种热值高、应用广泛的零碳清洁能源,被认为是未来最有应用前景的能源之一。生物质是一种碳中性的可再生能源,我国每年产出可利用生物质资源超过3亿吨标准煤,利用生物质能源进行制氢较好地契合我国的双碳政策,对于我国经济社会的可持续发展具有重要意义。基于钙基双功能材料的吸收强化生物质水蒸气气化制氢技术,利用CaO吸收剂原位捕集气化合成气中CO2,促进生物质气化反应平衡向产生H2方向移动。由于生物质中的碳元素来自于植物通过光合作用固定的CO2,该技术可以在长周期气化/煅烧循环中同时高效H2和实现CO2负排放。因此,钙基双功能材料强化生物质气化技术对于高效制氢和双碳目标的实现具有重要的意义和应用前景。

Highlights

  • Red mud-doped Ca-Al-Ce material is proposed to use in steam gasification of biomass.

  • Red mud-doped Ca-Al-Ce material improves H2 production in biomass gasification.

  • H2 concentration using red mud-doped Ca-Al-Ce material reaches69.1% after 10 cycles.

  • Red mud-doped Ca-Al-Ce material enhances tar cracking during cycles.

  • Ca2Fe2O5 generated from red mud and CaOimproves oxygen vacancy.

摘要

采用工业固废—赤泥作为Fe前驱体,合成赤泥修饰Ca-Al-Ce双功能材料,提高Ca-Al-Ce材料在生物质气化制氢中的催化焦油裂解性能。本文研究了赤泥修饰Ca-Al-Ce双功能材料在吸收强化生物质水蒸气气化过程中的强化制氢、脱碳与催化焦油裂解性能,分析了其在多次循环中物相组成、电子特性、表面及微观结构的演变,阐明了赤泥修饰对双功能材料捕集CO2与催化焦油裂解的影响机理。发现赤泥的最佳添加量为5wt%,20次循环后H2浓度可达65.1vol%,比未修饰材料提高了82.4%。此外,20次循环后,赤泥修饰使甘蔗渣气化的焦油、残碳、CO2浓度分别减少了25.2%、8.6%、52.2%。首次循环时赤泥中Fe2O3与CaO通过高温固相反应生成Ca2Fe2O5,促使材料产生了氧空位。赤泥修饰Ca-Al-Ce双功能材料中Fe组分的氧化程度随循环次数增加而提高,更有助于生物质水气变换、焦油裂解等反应的进行。赤泥修饰对于促进制氢、捕集CO2和焦油裂解有关键影响。因此,赤泥修饰Ca-Al-Ce双功能材料用于吸收强化生物质水蒸气气化制氢技术具有很好的前景。

更多关于“H2 production"的研究详见:

https://www.sciencedirect.com/search?qs=H2%20production&pub=Applied%20Energy&cid=271429

Abstract

The sorption-enhanced steam gasification of biomass (SESGB) using CaO-based materials is considered as a promising method for H2 production. Ca-Al-Ce material has been reported as a good bi-functional material in SESGB process. Red mud is a solid waste in aluminium industry with large yield, which is rich in Fe2O3. In this work, a red mud-doped Ca-Al-Ce bi-functional material was prepared by wet-mechanical mixing method for H2 production from SESGB. The CO2 capture, H2 production, and tar reduction performances during SESGB process using the red mud-doped Ca-Al-Ce bi-functional material were studied. The results show that the optimum addition amount of red mud in the bi-functional material is 5 wt%. After 20 SESGB cycles, the H2 concentration using the red mud-doped Ca-Al-Ce material achieves 65.1 vol%, which is 82.4% higher than that using Ca-Al-Ce material. Besides, with the addition of red mud in the bi-functional material, the tar, residue char yields and CO2 concentration decrease by 25.2%, 8.6% and 52.2%, respectively. Fe2O3 in the red mud reacts with CaO to form Ca2Fe2O5 in the 1st cycle, and Ca2Fe2O5 is stable during 20 cycles, which is beneficial for the generation of oxygen vacancy. The oxidation states of Fe species in the material increase with the number of SESGB cycles, thus the catalytic effects on water gas shift reaction and tar reduction are promoted. The red mud addition is the key factor that results in high H2 production, CO2 capture and tar reduction performances, so the red mud-doped Ca-Al-Ce material appears promising for SESGB.

Keywords

Sorption-enhanced steam gasification of biomass; 

CaO-based material; 

Red mud; 

H2 production; 

CO2 capture

Fig. 5. Syngas compositions from SESGB cycle susing RM-doped Ca-Al-Ce material: (a) H2; (b) CO2; (c)CO; (d) CH4.

      

Fig. 9. EPR spectra of RM5-Ca75Al10Ce15and Ca75Al10Ce15 during SESGB cycles.

Fig. 10. XPSspectra of O 1s for RM5-Ca75Al10Ce15and Ca75Al10Ce15 after 10 SESGB cycles.

结论和启示本文以工业固废—赤泥作为Fe前驱体合成赤泥修饰Ca-Al-Ce双功能材料,将甘蔗渣作为典型生物质代表,研究了该双功能材料强化甘蔗渣水蒸气气化制氢特性。研究发现,当赤泥添加量为5%时,赤泥修饰Ca-Al-Ce双功能材料在多次碳酸化/煅烧循环中的CO2捕集性能保持稳定,20次循环后CO2吸收量为0.51g/g。赤泥修饰Ca-Al-Ce材料用于甘蔗渣气化制氢过程,20次气化/煅烧循环后H2浓度为65.1 vol%,比使用未修饰材料时提高了82.4%。赤泥中的Fe2O3和CaO发生高温固相反应生成Ca2Fe2O5,该物相在20次循环中保持稳定,可促进材料中氧空位的产生,提高了晶格氧吸附量,促进了O2-迁移,从而提高CO2捕集性能,同时为挥发分重整与焦油裂解提供了反应活性位点,增强了CaO与CeO2的相互作用。赤泥修饰Ca-Al-Ce双功能材料具有良好的循环稳定性,虽然发生了轻微的高温烧结但是微观孔隙结构仍较为发达,有利于气体在材料内部的扩散。因此,赤泥修饰Ca-Al-Ce双功能材料具有较好的强化制氢、脱碳与催化焦油裂解性能。

关于Applied Energy



本期小编:丁志雄;审核人:何娴雅。

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.109,CiteScore 20,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第61,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。

开源(Open Access)姊妹新刊Advances in Applied Energy》现已正式上线。在Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!



本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:biomass12345)


为了增加生物质领域科研人员的交流与合作,我们编辑部目前组建了生物质前沿微信交流群,欢迎相关领域研究人员入群讨论,共同进步。

进群方式:添加小编为好友(微信号:biomass12345),邀请入群。

请备注:姓名+单位+研究方向。


另外,本公众号还友情为国内外有需求的实验室免费发布招聘信息,也可为学术机构发布相关学术会议信息


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存